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Abstract-The paper presents a numerical study of phase-change problems, using finite-volume procedures 
of the ‘enthalpy’ formulation. A mathematical model is developed, and is applied to predict the transient 
behaviour of internal solidification in a cooled pipe, for flows at laminar Reynolds numbers. Work is 
directed towards predicting the production of solid crust when both diffusion and convection effects are 
important. Results are presented, and they are compared with available experimental measurements. It is 

concluded that the procedure is robust and flexible and that the results are promising. 

1. INTRODUCTION 

THE PURPOSE of this work is the development and 
application of mathematical models for simulating 
phase-change engineering problems, under the effects 
of both convection and diffusion. Such problems are 
encountered, for example, in the metallurgical and 
environmental industries. 

The complexity of the phase-change process 
depends on both the structure of the material and the 
type of conditions imposed on it. 

Previous analytical work is limited to the one- 
dimensional diffusion case, generally classified as a 
‘moving boundary’ problem. The theory is idealized to 
instantaneous irreversible molecule immobilization, 
presenting a sharp planar surface moving through 
the medium (the ‘Stefan problems’ [ 11, of isothermal 
phase change). Many approximate analytical tech- 
niques such as the heat-balance integral [2], and the 
variational technique [3] have been developed and 
used to acquire approximate solutions in diffusion 
type problems. Numerical methods, both finite 
difference [4] and finite element [5] appear more 
powerful in solving such ‘moving-boundary’ 
problems, especially in the presence of strong con- 
vection [69]. Under isothermal conditions, most 
work to date has been concerned with the prediction 
of the position and shape of the solid/liquid interface, 
using either time-variant or fixed mesh systems. The 
time-variant mesh systems [l&12] tend to be restric- 
ted to simple problems and geometries. The fixed- 
mesh studies tend to use empirical relationships for 
the convective heat transfer in the liquid phase [13- 
16], a more general approach being to take account 
of such effects in the governing equations [17-201. A 

(1 Present address : Department of Mechanical Engin- 
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different modelling approach is to remove the depen- 
dence on the position of the phase-change front by 
employing an enthalpy function. This technique 
appears successful in natural convection type prob- 
lems [21-231 as well as in pure diffusion problems. A 
comprehensive review of the most recent pure con- 
duction/diffusion methods may be found in the recent 
paper by Hsiao [24], in which a simple algorithm for 
determining the physical state (liquid, molten or solid 
phase) at each computational node is presented. The 
problem for analytical work is the diffusion coefficient 
discontinuities at the phase-change front, that limit 
the analysis to semi-infinite media. Attempts to over- 
come the problem have been reported by Danckwerts 
[25] and by Crank [26], the latter being the nearest 
solution to the flat plate problem. In all cases, 
however, the strength, accuracy and practical use- 
fulness of Stefan-type formulations may be considered 
as limited. Thus, in metallurgical solidification we are 
often dealing with a non-planar front due to poor 
control of the imposed temperature gradient. Den- 
drites form, instead of the assumed cellular formation, 
and large uncontrolled temperature gradients may 
cause instability at the front, leading to pro- 
truberances or ‘facets’ forming on the cell face. The 
latter becomes undulatory, causing irregular solidi- 
fication. Furthermore, natural convection makes 
the real fronts nonvertical, causing intermittent solidi- 
fication and melting. A detailed summary of recent 
work in this area may be found in ref. [26]. 

Most numerical solutions to date are still restricted 
to Stefan-type problems (i.e. ‘plane front/diffusion 
only’) and concentrate on front shape and position 
tracking. Therefore, a numerical method is still 
required to account for forced convection effects and 
for latent heat evolution. For this purpose, an 
enthalpy formulation has been developed which, 
although it does not offer information on the precise 
position within a computational cell of the solid/liquid 
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interface, is found to be attractive in terms of 
accuracy, simplicity and practicality. The technique is 
applied to model solidification of an isomorphous 
fluid, flowing through a cooling pipe, with a view to 
predicting the build-up of solid crust, the likelihood 
of laminar flow blockage, and the detailed enthalpy 
and flow fields during solid development. The pre- 
dictions are obtained using a fully-implicit, iterative, 
finite-volume procedure embodied in a general com- 
puter program called PHOENICS [27], and are com- 
pared with available experimental data. 

2. THE MATHEMATICAL MODEL 

2.1. The equations and solution procedure 
The conservation equations applicable to the flow 

and heat/mass transfer problems considered here are 
of the following general form : 

&rp4)+V(rp+-rr,Vql) = ti@+r& (1) 

where 4 is the general conserved property of phase 
under consideration, I+, the exchange coefficient of 4, 
S, the source rate of 4 per unit volume, r the volume 
fraction of phase, p the phase density, v the velocity 
vector of phase, @ the &content of material crossing 
the phase boundary, and ti the mass per unit volume 
entering the phase, from all sources per unit time. 

The three momentum equations for each phase are 
generated by setting 4 = u, u or u’, e.g. the phase 
velocity components in three space directions, and the 
exchange coefficient, I@, equal to viscosity; S, are 

forces (e.g. pressure gradient, gravitational, frictional 
forces, etc.). For the energy equation, 4 = h, the sen- 

sible heat, and Is = KJC, where K is the thermal con- 
ductivity and C the specific heat. In a phase-change 
problem the source S, will depend on the nature of 
the latent heat evolution and will require careful defi- 
nition. 

Finally, mass continuity dictates that 

$ (rp) +div (rpv) = ti. (2) 

The above equations can be solved by a general pro- 
gram called PHOENICS [27]. This program solves 
for the relevant variable & at finite-difference node P, 
using a finite-volume form of the conservation equa- 
tion 

a&+ = Xa,&+S, (3) 

where & is the value of 4 at node P, at the centre of 
its control volume, 4, the value of 4 at the relevant 
neighbouring point at the centre of its control volume 
(including the ‘old’ time value 43, aP the coefficient for 
node P which, in the absence of sources and boundary 
conditions, is the sum of the ays, and a, the coefficients 
for relevant neighbouring nodes consisting of con- 
vection and diffusion, added together. 

n = Unit velocity vector 

of liquid 

V = V, + V, , volume 

S = Surface qrec 

FG 1. An arbitrary control volume. 

The source term in the finite-difference equation, 

S,, is linearized for stability, and the convection con- 
tribution is upwinded. 

The solution procedure in PHOENICS is a variant 

of the SIMPLE solution algorithm called SIMPLEST 
(cf. Patankar [6], and Rosten and Spalding [27]. 

2.2. The enthalpy formulation 
The essential feature of the proposed enthalpy tech- 

nique for convection/diffusion phase change is the 
latent-heat source term treatment, in the energy equa- 
tion. In a system which is undergoing a change of 
phase under heat transfer the total enthalpy, H, may 
be expressed as 

H= h+AH (4) 

i.e. the sum of sensible enthalpy h and latent heat AH. 
The latter is some function of temperature, F(T), with 

form depending on the problem. For isothermal solidi- 
fication 

L, T> T,,, 
F(T) = 0 

, T,,,>T 

where T,,, is the melting temperature for a pure sub- 
stance. 

With the definition of enthalpy provided by equa- 

tion (4) it is possible to develop the energy con- 
servation equation for a region undergoing a phase 
change. When this equation is cast into the form of 
equation (1) the form of the latent heat source, S,,, is 
derived. An energy balance over an arbitrary control 
volume l’, with phase change occurring within it 
(Fig. I), gives 

pHv*ndS (5) 

where V = V, + V,, n the unit vector and S the surface 
area. The term on the left-hand side represents the 
overall rate of heat change, and the terms on the 
right-hand side are the diffusional and convective heat 
transfer through the surface, respectively. The vector 
functions pHv and KVT have continuous first deriva- 
tives (because in the solid v = 0), and application of 
the divergence theorem to equation (5) gives 

S[ p;+V.(pHv)-V*(KVT) dV= 0 c 1 
or, since V is arbitrary 

p~+V.(pHv)-V*(KVT) = 0. (6) 
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Using definition (4) for H, invoking the conservation 
of mass, and recalling that the solid interface velocity 
is zero we have 

&h)++h”- $) = s* = + (7) 

which is in the standard form of the conservation 
equation (I), with the latent-heat source term defined 

as the rate of change of volumetric latent heat. 
Therefore, to model phase change in the presence 

of convection, a standard program like PHOENICS 
can be used with appropriate source-term modi- 
fications, to implement the latent heat behaviour and 
the solid velocity behaviour. These are described 
below. 

2.3. Latent heat behaviour 
Suppose that phase change is taking place at 

T = 0°C. Then for h > 0, heat can be extracted from 
h. When heat extraction causes h to become less than 
0 one must account for the phase-change behaviour. 
The amount of heat extracted at T = 0°C must be 
taken from the latent heat and h must be set to zero. 
This process should continue until all the latent heat 
has been extracted; then, any further heat exchange 
is from the sensible amount. This may be summarized 
as follows, where subscriptj denotes the time step and 

L the latent heat. 

heat extracted from h. 
Phase change not started yet 
hi>0 - AH=L 

Phase change occurring 
h ,+I <O AH=L 

Phase change occurring 

hi+ 2 < h,+ I O<AH<L 

heat extracted from H, 

h set to zero. 

heat extracted from H if 

possible. h corrected to 
zero if possible. If this is 
not possible, heat is 
taken from H until it 
becomes zero and rest is 
taken from h. 

Phase change complete 

hi+, ~0 AH=0 heat extracted from h. 

(8) 

The methodology for dealing with the above scheme 
during SIMPLEST iterations is as follows. Essentially 
if a control volume is changing phase on convergence 

the nodal latent heat AHp must be consistent with the 
predicted value of the enthalpy, h,, according to the 
relationship given by the AH = F(T) expression. 
Therefore, at each time step, the sensible-enthalpy 
values at the control volumes are computed by the 
standard solution procedure, and they are then cor- 
rected and set back as values of h, for the next time- 
step calculation. The correction stage involves the fol- 
lowing operations. The computed sensible-enthalpy 
value for the control volume is added to the latent 
heat value, which is initialized to L. When the outcome 

of this summation exceeds the value L, i.e. h, > 0, 

the phase change has not commenced in this control 

volume and the latent heat is left unmodified, the 
source for h, being zero. When the summation leads 
to a negative result, the phase change has occurred in 
one time step. Then all the latent heat is extracted and 
an equal amount is added to the sensible heat, which 
may or may not set it to zero (in the latter case, the 
cell has gone through the phase change and further in 
one time step). The latent heat is set equal to the 
enthalpy value at this time step, and therefore all heat 
extraction will be from h, at the following time steps, 
the source for hp being again zero. 

For cells requiring more than one time step to 
solidify, and for cells just starting to do so, the latent 
heat is corrected as follows. Subtraction from the old 
latent heat value (which is equal to L if solidification 
starts in the current time step) gives the amount of 
heat extracted from AH to the sensible enthalpy in the 
source. In the next time steps when less heat has been 
extracted than the latent heat, this process continues 
until all AH has been used up. When an insufficient 
amount of latent heat is left, h, at the current time 
step has a negative source (equal to the difference of 
the heat extraction and the remaining latent heat), 
and no source for the subsequent time steps. The 

above procedure ensures that a control volume is in 

the liquid state if (hP), > 0 and (AHp), = f., whereas 
if a control volume is in the solid state (hp), < 0 and 
(AHp), = 0. On convergence the enthalpies in control 
volumes changing state will be zero with an appro- 
priate latent heat in the range 0 < AHp < L. 

2.4. Solid zlelocity treatment 

Since a fixed grid is used, the velocities at its nodes 
must be monitored and possibly altered, in accordance 
with the principle that liquid above its melt tem- 
perature should possess the velocity dictated by the 
momentum equations, and solid material must have 
zero velocity. Since at the solid/liquid interface the 
velocities must go to zero, the momentum equations 
must reflect this behaviour. Various techniques of 
modelling the behaviour of the velocities in the vicinity 

of the phase change have been investigated. It was 
found that the most accurate of those was a gradual 
‘slow down’ technique rather than a complete solid- 
velocity switch off at some arbitrary point over the 
phase change (e.g. start, middle or end). 

Gradual slow-down techniques have been suc- 
cessfully applied to cases of natural convection in 
square cavities. Gartling [28] suggested a slow-down 
technique based on a variable viscosity function, 
which is inversely proportional to the amount of latent 
heat contained in a cell. This method has proved to 
IX inadequate because it reduces artificially the liquid 
velocities as well as those of the solidifying material, 
and therefore overestimates the solidified domain. 
Furthermore, it is difficult to devise an accurate func- 
tion for the viscosity term. 

For modelling purposes, the solidification process 
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AH LcL_cd I,, 
Fro. 2. Grid system and notation 

can be envisaged as a case of elements of the numerical 
discretization forming grains in a complex and irregu- 
lar pattern. This process gradually reduces the fluid 
flow through the element, by decreasing the cell ‘poros- 
ity’ or ‘voidage’, E (which is defined as the ratio of 
unblocked volume over the nominal cell volume). This 
concept leads naturally to the model of a porous 
medium with the liquid fraction flowing through a 
solid matrix. This model has physical significance in 
a mushy phase change. whereas for an isothermal 
phase change the model is the result of the numerical 
discretization. 

The velocities are staggered ahead of the cell centres, 
at which all other variables are stored, and the latent- 
heat content at the velocity locations is calculated by 
arithmetic averaging, e.g. for the w-velocity node 
(Fig. 2) 

Notable work on fluid flow through a porous 
medium of constant porosity has been carried out by 
Ergun [29]. However, the constant porosity assump- 
tion is obviously not applicable to the solidification 
process ; and the Ergun terms for estimating the pres- 
sure drop through a cell are unnecessarily complex 
for this application. containing too many assumptions 
in evaluating a representative size and distribution of 
forming grains. A simpler method can be derived from 
Darcy’s law which states that the velocity of flow in a 
porous medium is proportional to the pressure gradi- 
ent, e.g. 

k JP 
-l(= -- 

& Lx 

where. u is the interstitial velocity, E the porosity and 
k an empirical constant. Hence the flow in a porous 
medium can be accounted for by momentum equa- 
tions (1) where S, = -kuIE and $ = -kv/E. 

For the above porous-medium mode1 the porosity 
E will be a function of the representative latent heat 
content of a cell. As AH + 0 the porosity E + 0, and 
the source term will dominate the momentum equa- 
tion and force the related velocities up and L+. close to 
zero ; and as the latent heat content of a cell tends to 
its maximum, the porosity E -+ 1 .O. 

The task is now to construct the appropriate func- 
tion to operate between these limits. The simplest one, 
e.g. direct proportionality between latent heat and 
porosity, was discarded for two main reasons. Firstly, 
it is known that the ‘grain formation’ occurs much 
faster near the end of the solidification region than 
near its start. Secondly, implementation of such a 
function demonstrated that velocity changes were 
sudden unlike the real behaviour. For these reasons 
an exponential function was chosen, and implemented 
as follows. Consider flow in the z-direction (Fig. 2). 

grid point 

AH, = Hci.j,k) f H<i.j,k+ I) 
2 (10) 

The porosity in a velocity control volume will be a 
function of the latent heat AH,., satisfying the above- 
mentioned conditions. Thus, as AH, + 0, E + 0 and 
the source term added to the momentum equation 
must dominate it and force the velocity wp to values 
close to zero. A suitable choice for the source term is 

S, = -B[exp(L-AH,)-l]w, (11) 

where B is a constant discussed below and the - 1 is 
used to ensure zero source when a cell is still in the 
fully liquid state. This source is rearranged 

S, = B[exp (L-AH,) - 1](0 - w,) (12) 

and upon addition to the discrete momentum equa- 
tion (3) yields for wp 

(a,+B([exp(L-AH,)-l])w, 

= Qjw, + (pp -pfi,)A,, = G 

or 

G G 

n” = aP + B[exp (L-AH,) - 11 = a,+S (13) 

Hence, wp is gradually set to a smaller and smaller 
number, as solidification proceeds, its ultimate value 
depending on the situation modelled (i.e. value of G) 
and on the value of the constant B in equation (13). 
In the extreme case when the cell is fully solid, S is 
very large and wp -+ 0. The constant B is chosen with 
regard to the following factors: it should be large 
enough to produce velocities in solidified regions at 
least three orders of magnitude less than the velocities 
in the liquid regions ; it should not be so large as to 
cause very rapid changes in velocity, especially in the 
case of forced convection with large initial velocities, 
as this would cause high pressure corrections and 
possible convergence failure ; finally, it should react 
fast enough to produce small velocities immediately 
upon a phase change. Tuning of this constant was 
carried out by monitor observations, and its final 



Computer simulation of moving-interface, convective, phase-change processes 1789 

value was of the order of lo- ‘% of the mean stream 
velocity. 

3. RESULTS AND DISCUSSION 

The problem chosen for demonstrating the present 
technique is that of forced convection through a cyl- 
inder with the wall maintained at a temperature below 
the freezing point of liquid material entering at uni- 
form temperature and velocity. The liquid was 
assumed incompressible, Newtonian, with constant 

properties. Radiation and free convection effects were 
neglected. 

This problem having never been successfully mod- 
elled to the authors’ best knowledge, is considered 
of prime interest in the metal casting field. In metal 
pouring, care must be taken to ensure that fluid does 
not start solidifying until it has entered the mould, and 
that its forced momentum is not unnecessarily large, 
resulting in undesirable solidification and micro- 

structure because of possible flow separation in the 
sprue. However, its inlet flow should be large enough 
to avoid metal-air contact, that would lead to 

oxidization. The quantity used to gauge the flow is 
fluidity (i.e. reciprocal of viscosity) or the length from 
the inlet to the beginning of solidification, claimed 
to be independent of the fluid flow but significantly 
dependent on the temperature difference (T,,,, - T,,) 
applied, the latent heat and the thermal resistance of 
the pipe wall. 

3.1. Pipe blockage literature 
It is conceivable that as fluid flows through a pipe 

with its wall maintained at a sub-freezing temperature 
two possible final conditions may arise. Firstly, if the 
heat extracted is in excess of that contained by the 
fluid at its supply, the system may reach a steady state 
at which crust formation ceases and flow continues. 
Secondly, the crust may develop until it blocks fully 
the pipe and stops the flow. This problem is of major 
concern to metallurgists and has previously been stud- 
ied using various approaches. A general numerical 
approach, suggested by Szekely and Di Nivo [30], and 
a Nusselt number formulation by Thomason et al. [3 l] 
lead to poor solutions. Another approach presented 
by Sellors et al. [32], and more recently by Sleider et 
al. [33], solves the steady-state radial conduction and 
axial convection heat equations, and describes the 
growth of the crust to inhibiting conditions, but fails 
near a pipe blockage, especially at large Stefan 
numbers. Various variations on ref. [33] were pro- 
posed by Shibani and Ozisik [34] but they assume 
a large Peclet number, i.e. ‘fast’ fluid flow reducing 
buoyancy and axial heat-transfer effects negligible. 
This is not suitable for a liquid metal in laminar flow 
(Pe < 1). The most developed method to date was 
proposed by Sampson and Gibson [35, 361, who sup- 
ply a variable pressure drop across the pipe in order 
to obtain blockage. Their method is applicable to 
cases where for a given discharge end pressure, the 

inlet pressure is allowed to decrease, but not to cases 
where fluid is supplied at an approximately constant 
rate. That work also encounters problems on nearing 
blockage, but it predicts that the crust growth rate 
decreases nearing the blocked condition, and provides 
a useful relationship for the blockage. 

A good summary of other methods for particular 
problems is given in ref. 1371. 

3.2. Convergence and parametric studies 
Initial convergence difficulties were overcome by 

using a simultaneous solver for the pressure-cor- 
rection equation, and false-time-step relaxation on 
enthalpy and velocities. Many runs were performed in 

order to optimize the required number of sweeps per 
time step, and the grid and time-step sizes, as shown 
in Table 1. 

The change in solution with time-step refinement 
was found to be important in this transient, and it 
was monitored carefully by plotting the solutions at 
various times and positions in the pipe, as illustrated 
for enthalpy in Fig. 3. It was found that the time- 
step effect was more pronounced near the inlet. As 
indicated in the table, the final run was one with 40 
sweeps per time step, a 20 x 40 grid and 40 time steps 
over a period of 1 s. 

3.3. Discussion of results 
Sample results are presented in Figs. 46 in the 

form of velocity vectors and solid and liquid enthalpy 
contours. The results are presented at four times, e.g. 
t = 0.25, 0.50, 0.75 and 1.0s. The enthalpy plots are 
actually isotherm plots, as the specific heat was taken 
as unity for both solid and liquid. 

Continuation of the transient to a time of 2.0s 
revealed insignificant changes, indicating that the sys- 
tem reached steady state after 1 .O s. The greatest rate 
of change of crust thickness occurred in the last quar- 
ter of a second. The predicted behaviour during the 
transient is summarized below. 

3.3.1. Crust development and solid enthalpy. 
(1) 0 < t < 0.5 s. The rate of crust development is 

greatest over the initial 0.25 s of this period. Solidi- 
fication proceeds from the outlet end of the wall, 
developing into a solid layer of approximately con- 
stant thickness along the pipe, except for its curvature 
at the start of wall heat extraction. The solidification 
band (i.e. the flow region between the T = 0 and 1°C 
isotherms) is very narrow near the inlet, widening to a 

width greater than the crust thickness at outlet. The 
relative thinness near the inlet is an indication of the 
high ‘bulk enthalpy’ of the fluid there. It is of interest 
to observe that in approaching a steady state, solid 
only forms up to the T = 1°C isotherm, which is 
almost constantly positioned for this period. 

The relative change in isotherm spacing is also of 
interest. The expected trends of tighter isotherms in 
the centre of the solid layer, and of highest tem- 
perature gradients occurring adjacent to the fluid and 
wall, are clearly observed. 
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Table 1. 

Number of sweeps 
Run No. per time step Grid Time steps Comments 

1 20 
2 40 
3 80 

10x20 40 
No significant change from 40 to 80 sweeps per time step. therefore 
choose 40 

40 

20x40 
40 x 80 

20x40 

40 

80 
160 

No significant change in accuracy 

Small change in from run 4 accuracy 
Insignificant change in from accuracy run 6 

Number of time steps 

Number of time steps 

Number of time steps 

Time : 025 s 
Position: new inlet 

4. I 
Totol entholpy (J kg-‘) 

FIG. 3. Time-step refinement (transient run for 2.0 s). 

=I60 

= 80 

=40 

(2) 0.5 < t < 1.05 s. In this time period, steady state 
is reached very rapidly and the isotherm charac- 
teristics are most dissimilar to earlier transient states. 
For instance, the ‘solidifying band’ has narrowed con- 
siderably and inspection of the velocity vectors indi- 
cates a molten region here, as velocities are high and 
therefore there is no sign of full solidification. The 
minimum temperature of the crust has reached a value 
0.3”C less than in the previous times, and the region 
of tight bulk isotherms has moved upstream. The 
outlet temperature gradient across the solid is nearly 
constant, the isotherms having curved to match the 
more complex sloping profile of the crust surface. 
Extrapolation of this inference to the case of pipe 
blockage would imply that the axial blockage thick- 
ness would only be a small percentage of the pipe 
length. 

3.3.2. Liquid enthalpy plots. 
(1) 0 < t < 0.5 s. Inspection of the relevant plots 

reveals that the isotherms for times up to 0.5s are, 
with little approximation, similar in pattern showing 
the bulk of the flow to be between 1 and 2°C above 
the phase-change temperature. Axial heat conduction 
at the inlet close to the wall, accompanied by effects 
of the flow convergence and development has brought 
the bulk of the fluid to 2°C. Possibly due to small 
velocity vectors in the fluid ‘impacting’ on, or diverg- 
ing from the start of the solid crust, this region of fluid 
is seen to reach freezing temperature faster, explaining 
the strong curvature of the H = 2.0 J kg-’ K-’ iso- 
enthalpy near the wall. which eventually flattens out 

across the fluid core, where approximately constant 
velocities are found. 

(2) 0.5 < t < 2.0 s. Once the steady state is reached. 

the isotherms elongate indicating a constant radial 
conduction state for the fluid that accelerates because 
of the negative axial area differential. In other words, 
the heat extraction from the fluid is less, due to the 
reduced ‘residence time’. This has effectively inverted 
the T = 4°C isotherm, while the central core only 
reaches the temperature of 2°C (cf. isotherm position 
in earlier time) at approximately three-quarters along 
the pipe length. The curvature is as would be expected 
for flow near the crust, the isotherms converging 
towards the pipe inlet. The effects of axial conduction 
on fluid ‘impacting’ on the upstream end of the crust 
are more pronounced in this state, as demonstrated 
by the inversion of the T = 4C isotherm between 0.5 
and 1 .O s. The plot at t = 1 .O s reveals also that fluid 
retains its initial temperature (all fluid to the left of 
the T = 5.o”C isotherm is at its initial temperature) 
for a considerable time in the steady state, being 
retained the longest by the accelerated core well into 
the crust zone. This is very different to the transient 
development. Extrapolation of this behaviour would 
confirm that pipe blockage would occur very rapidly 
in agreement with experimental behaviour. It has to 
be mentioned that the setting of equal thermal con- 
ductivities for solid and liquid has simplified the iso- 
therm considerations. 

3.3.3. Velocit_v vectors. 
(1) 0 < t < 0.5 s. During this time, the profile of the 
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Solid enthalpy at t =W5 S 

Solid enthalpy at t =Cl5 s 

Solid enthalpy ot f= 0.75 s 

Solid enthalpy at t = I s 

Contour key: 

Top contour -7 
-5 
-3 
-I 

0 

Interface contour 1 units J kg-’ 

FIG. 4. Solid enthalpy history. 

solid crust is approximately flat. The effect is that 
the velocity vectors adjusted by the initial flow area 
convergence of about 30%, become approximately 
parallel and their profile ‘develops’ after half the pipe 
length. There is retardation and solidification occur- 
ring in the proximity of the crust surface. The resulting 
‘fully developed’ flow profile is not of the parabolic 
laminar shape but it is flatter along the core. This may 
be the result of the thickening of the solidification 
band near the outlet, i.e. the phase-change effects near 
the outlet are strong even in the core, where a mushy 
region exists. The resultant drag is of a purely viscous 
nature in the boundary layer, which is quite in keeping 
with a hydraulically smooth flow attributed laminar 
friction. 

(2) 0.5 < t < 1 .O s. During this time, the high nega- 
tive axial flow area gradient dominates the flow lead- 
ing to a more parabolic velocity profile at the exit, the 
core acceleration being comparatively unaffected by 
the phase-change band, due to its relative thinness. 
The core flow has accelerated to roughly six times its 
initial axial velocity value. In this case, an obvious 
two-dimensional profile is present with considerable 
negative radial components. These facts would sug- 

gest that the rate at which the crust thickness increases 
with time at the outlet, would decrease on nearing 
blockage due to high convection there. Looking along 
constant radial values, vectors near the solid at entry 
are very small and are hence easily absorbed into the 
crust. This process takes longer further downstream, 
and at the outlet vectors in the solidifying band are 
very high in comparison, indicating a thick, steady- 
state mushy region. 

4. COMPARISON WITH EXPERIMENTS 

The ultimate test for any mathematical model is to 

compare its predictions with results from accurate 
physical experiments. In this case the model was run 
until steady state was reached for the laminar, iso- 
thermal flow of water, in order to compare predictions 
with data found in Lazaridis [4]. 

In these experiments (for which a schematic view 
of the apparatus is given in Fig. 7) thermocouples 
were used to measure the temperature of the fluid at 
the pipe wall 1.5 in. downstream from the test section 
inlet and 3 in. before the outlet. Acetone was pumped 
at a high rate through the cooling wall keeping this 
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FIG. 5. Fluid enthalpy history. 

section at approximately constant temperature. The 
mass flow rate used for the computations was set to 
that of the experimental steady-state value (which 
might lead to overprediction of temperatures) and no 
account was taken of dissolved air (which might help 
correct the afore-mentioned deviation). The predicted 
results were compared with the experimental results, 
for the conditions as stated in Table 2. Numerical 
results were obtained using a 10 x 20 grid, requiring 
15 min CPU time on a PRIME 750 mini-computer. 

K=6.18~lO-~kWrn-‘K-’ 

C, = 42kJkg-’ 

LA T = 335 kJ kg--’ 

Test length = 0.95 m 

Test diameter = 0.05 m. 

The experimental water outlet temperature rep- 
resents a bulk reading; and in the presence of model 
crust build up the predicted outlet fluid temperature 
values were suitably averaged. The properties used are 
given below 

Five experimental points do not allow a conclusive 
comparison to be derived, but it may be seen that 
even with significant freezing for both low and high 
Reynolds numbers (Red = 585 and 1617) the present 
method slightly overpredicts outlet temperatures. The 
agreement is, however, very fair for any practical 
application. 

I( =6.4x 10-4kgm~‘s-’ For the five test runs performed, blockage data may 
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FIG. 6. Fluid velocity history. 

FIG. 7. Schematic view of experimental apparatus. 

be compared with the predictions by Sampson and 
Gibson [35]. They proposed an equation as a criterion 
for the likelihood of complete laminar flow blockage : 
complete blockage will result if 

log,,,/?> a-&log,,ain which: 

Applied to the test runs, both models show complete 
agreement with the experimental behaviour. 
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Table 2. 

m (g s-9 

1.45 
1.87 
2.55 
3.93 
4.02 

Red 
(unblocked) 

585 
725 

1040 
1560 
1617 

T, (K) 

302.0 
300.7 
301.9 
301.7 
305.0 

t Cases with significant freezing. 

5. CONCLUSIONS AND FURTHER WORK 

A general mathematical model has been developed 
for predicting solidification/melting processes, appli- 
cable to any geometrical or heat and mass flow con- 
ditions. It appears that the enthalpy method is general 
and conforms well with general control-volume tech- 
niques for fluid-flow and heat/mass transfer simu- 
lations. As such it can be readily incorporated into 
large-scale models of heat/mass transfer processes. 
Dealing with the moving interface, the exponential 
‘Darcy-like’, slow-down method appears flexible and 
robust, and its implementation does not involve 
detailed interpolations. 

Future refinements could include : 

(a) more complex property relationships for larger 
temperature variations (e.g. density, viscosity, etc.) ; 

(b) the introduction of turbulence quantities ; 
(c) introduction of more complex microstructures 

as would be required for accurate metal processing 
work (this phenomenon in itself is an undesirable 
process) ; 

(d) for much lower flow rates buoyancy effects 
might be introduced to encompass the effects of free 
convection. 

Perhaps the most useful applications of this work 
might be made in designing less separating sprue and 
funnel devices used in the casting industry and for 

reduction of heating/cooling requirements for long 

distance fluid transportation or controlled forging. 

Acknou*ledgements-Permission by CHAM Ltd.. London, 
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SIMULATION NUMERIQUE DE MECANISME CONVECTIF D’INTERFACE MOBILE 
ET CHANGEMENT DE PHASE 

Rbnm~On prtsente une etude numerique des problemes de changement de phase en appliquant des 
procedures de volume fini a la formulation “enthalpique”. On dtveloppe un modele mathematique et on 
I’applique a la prediction du comportement variable de solidification interne dans un tube refroidi. pour 
des ecoulements laminaires. L’etude est dirigee vers la prediction de la production de la crofite solide quand 
les effets de la diffusion et de la convection sont ensemble importants. Des resultats sont present&s et ils 
sont compares avec des mesures experimentales. On conclut que la procedure est robuste et flexible et que 

les rtsultats sontprometteurs. 

RECHNER-SIMULATION VON KONVEKTIVEN PHASENANDERUNGSPROZESSEN 
MIT WANDERNDER GRENZFLACHE 

Zusammenfassung-Es werden Phasenlnderungs-Vorgange aufgrund von Enthalpie-Bilanzen mit Hilfe 
eines “Finite-Volume”-Verfahrens numerisch untersucht. Mit einem mathematischen Model1 wird das 
transiente Verhalten der Vorgange bei der Verfestigung in einem gekiihlten Rohr berechnet, das bei 
Reynolds-Zahlen im laminaren Bereich durchstriimt wird. Die Arbeit konzentriert sich auf die Berechnung 
der Entstehung einer festen Kruste, und zwar fiir den Fall, da8 sowohl Leitung als such Konvektion von 
Bedeutung sind. Die Ergebnisse werden dargestellt und mit den zur Verfiigung stehenden MeBdaten 
verglichen. Es wird der SchluD gezogen, da13 das Verfahren unempfindlich und flexibel ist und da13 die 

Ergebnisse ermutigend sind. 

MO~EJIWPOBAHWE HA 3BM flBH’HcYllIEI%X MEX@A3HOI? 1-PAHMHbI R 
HPOHECCOB @A30BOFO HPEBPAIIIEHHX HPR HAJIklYMH KOHBEKHRH 

hoTalora_llpencTanxe~o wicnemioe HccnenonaHbie 3anay (pa3oBoro npespameHnn c ncnonb30na- 

HNeM MeTOlla KOHeYHOrO o6aehna AnX 1$0pMyJtnpOBKFi 3HTaJtbnHH. Pa3pa6OTaHHaK MaTeMaTHWCKaR 

MOneJtb ITpHMeHaeTCD ,I,JIUln paCYeTa HeYCTaHOBHBmerOCK peWSMa BHyTpeHHerO 3aTBepAeBaHHn B OXnaXC- 

neHHOfi Tpy6e c TeYeHWeM npn JraMBHapHbtx WCJraX PeiiHOJTbnCa.~eJIb pa60TbI-paCCW%TaTb o6pa3o- 

BaHne TBepAOfi KOpKA B ,'CJtOBnKX,KOrLTa 3+@KTbI AH44,Y3HA H KOHBeKnHH KBJUW3TCa C,'LL,ecTBeHHbWH. 

l-@@CTaBJTeHHbIe lJe3,'JtbTaTbI CpaBHHBamTCa C HMemmBMHCK LlaHHMMA 3KCnepHMeHTa,TbHbtX n3Mepe- 

HPii. CJTeJIaHbI BblBOLlbt, ST0 MeTOn RBJlffeTCR HaLTeXCHbIM H rU6KBM, a pe3yJtbTaTbI- 

06Ha~eNiBaKWHMH. 
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